Two-Dimensional Large Gap Topological Insulators with Tunable Rashba Spin-Orbit Coupling in Group-IV films

نویسندگان

  • Shou-juan Zhang
  • Wei-xiao Ji
  • Chang-wen Zhang
  • Ping Li
  • Pei-ji Wang
چکیده

The coexistence of nontrivial topology and giant Rashba splitting, however, has rare been observed in two-dimensional (2D) films, limiting severely its potential applications at room temperature. Here, we through first-principles calculations to propose a series of inversion-asymmetric group-IV films, ABZ2 (A ≠ B = Si, Ge, Sn, Pb; Z = F, Cl, Br), whose stability are confirmed by phonon spectrum calculations. The analyses of electronic structures reveal that they are intrinsic 2D TIs with a bulk gap as large as 0.74 eV, except for GeSiF2, SnSiCl2, GeSiCl2 and GeSiBr2 monolayers which can transform from normal to topological phases under appropriate tensile strain of 4, 4, 5, and 4%, respectively. The nontrivial topology is identified by Z2 topological invariant together with helical edge states, as well as the berry curvature of these systems. Another prominent intriguing feature is the giant Rashba spin splitting with a magnitude reaching 0.15 eV, the largest value reported in 2D films so far. The tunability of Rashba SOC and band topology can be realized through achievable compressive/tensile strains (-4 ~ 6%). Also, the BaTe semiconductor is an ideal substrate for growing ABZ2 films without destroying their nontrivial topology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering three-dimensional topological insulators in Rashba-type spin-orbit coupled heterostructures

Topological insulators represent a new class of quantum phase defined by invariant symmetries and spin-orbit coupling that guarantees metallic Dirac excitations at its surface. The discoveries of these states have sparked the hope of realizing non-trivial excitations and novel effects such as a magnetoelectric effect and topological Majorana excitations. Here we develop a theoretical formalism ...

متن کامل

Sensitively Temperature-Dependent Spin Orbit Coupling in SrIrO3 Thin Films

Spin orbit coupling plays a non-perturbation effect in many recently developed novel fields including topological insulators and spin-orbit assistant Mott insulators. In this paper, strongly temperature-dependent spin orbit coupling, revealed by weak anti-localization, is observed at low temperature in 5d strongly correlated compound, SrIrO3. As the temperature rising, increase rate of Rashba c...

متن کامل

Functionalized Thallium Antimony Films as Excellent Candidates for Large-Gap Quantum Spin Hall Insulator

Group III-V films are of great importance for their potential application in spintronics and quantum computing. Search for two-dimensional III-V films with a nontrivial large-gap are quite crucial for the realization of dissipationless transport edge channels using quantum spin Hall (QSH) effects. Here we use first-principles calculations to predict a class of large-gap QSH insulators in functi...

متن کامل

A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds

We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase w...

متن کامل

Engineering a p+ip superconductor: Comparison of topological insulator and Rashba spin-orbit-coupled materials

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We compare topological insulator materials and Rashba-coupled surfaces as candidates for engineering p + ip superco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017